
5/15/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 1/10

C++ Coding Standards and Practices

© 2019 Jan "GamesTrap" Schürkamp (GamesTrap@web.de). No rights reserved.

Latest Update: 2019-06-26

About these standards

These standards are put in place so all personal, collaboration and professional code will remain
easily readable, clear and concise. This allows engineers using the standard to leverage the most
from C++ compilers.

Above all else, code should be written for readability and maintainability. Never write a portion of
code with "I am glad I will never see this again." in mind - it will be seen again and it will need to be
maintained. Preparing code for readability will help avoid future mishaps.

Project

Must be built at the highest warning settings possible, with warnings treated as errors! Files and
directories must be named after the UpperCamelCase format.

MyFile.txt

Source Control

Versioning must be used on any project that:

May possibly take more than 48 hours to complete.

Has more than a single developer.

Build Automation

Every project should be capable of being added to a nightly build system that will pull the latest from
the project repository, run an automated build script and run tests associated with the project. All
projects should use premake5 to create the Visual Studio, XCode or other IDE project files.

mailto:GamesTrap@web.de

5/15/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 2/10

Const Correctness

Strive to use const wherever possible and correct to do so. const modifiers do not incur
performance penalties, but do make intentions clear and prevents unintended changes to an object.

Local Variables

Create local variables as constants whenever they will not change within their scope, this includes
holding a value from a called function, prefer holding a const reference over value.

 const Type& value(GetSomeValue());
 const Type value(GetSomeValue());

Correct:

 {
 const int localVariable = 10;
 ... //Never write to localVariable
 }

Passing / Returning Parameters

If a function does not modify an incoming parameter, it should be clearly marked using const.

 void SomeFunction(const int withCount);
 void SomeFunction(const Type& withCount);
 void SomeFunction(const Type* const withCount);

Class Objects

Make the object itself a const if a method will not change any internals by adding the const modifier
to the end of the method declaration. This will force the this* within to be const.

 class CSomeClass
 {
 public:
 int MethodOfClass() const;
 };

Header Files

5/15/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 3/10

Header Protection

Every header should internally protect itself from multiple includes using the following technique:
 Wrong:

 #ifndef _PROJECTNAME_FILENAME_H_
 #include "FileName.h"
 #endif

 Correct:

 #ifndef _PROJECTNAME_FILENAME_H_
 #define _PROJECTNAME_FILENAME_H_
 /*All header contents*/
 #endif /*_PROJECTNAME_FILENAME_H_*/

Defining Functions (inlining)

A header file should be used for declarations of types and functions only, however if code must be
inlined it should be placed under all declarations within the header file. This is for readability, when
looking through a header, one should not be concerned with implementation details. Correct:

The exception is for one line accessors and mutators, that simply set or return a value.

Dos and Don'ts

Don't use using within a header file. It will force any includers to automatically use it.

Do minimize including by forward declaring types whenever possible.

Do include or forward declare everything necessary for the header file to compile.

 namespace Example
 {
 class MyType
 {
 public:
 MyType& GetSomething();
 };
 }

 //--

 inline MyType& Example::MyType::GetSomething()
 {
 //Code
 }

5/15/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 4/10

Do not define variables within a header file, only declare them as needed.

Source Files

Locally Defined Types

Locally defined types must be declared within an anonymous, unnamed or named namespace. This
is to prevent undefined behavior if the type is declared in two sepereate translation units. Consider:
 In MyFoo.cpp:

 struct Foo { int x; char z; }

 In YourBar.cpp:

 struct Foo { float y[3], bool a; }

This is not a linker error stating it has been defined, it might be a warning at best, but is undefined
behavior.

Code Formatting

Indentation

Use tabs for indenting code, braces etc. Tabs should be set to four spaces. (This shouldn't matter if
using tabs properly)

Spacing

A space must precede and follow binary operators: + , - , * , << etc: Wrong:

 myVariable+=10;

 Correct:

 myVariable += 10;

Scope Braces

Scope braces should be placed on separate lines, and the contents of the scope tabbed. Wrong:

5/15/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 5/10

 while (condition) {
 //Contents of loop
 }

 while(condition)
 {
 //Contents of loop
 }

 Correct:

 while(condition)
 {
 //Contents of loop
 }

Text Width

All lines of code should be less than 120 characters wide, use the IDE to insert a marking line. If a
line extends a few characters beyond, then feel free to leave it if it's more readable that way,
otherwise break it up into smaller lines as needed for readability.

Try to aim for lines of less than 120 characters, rather than breaking the line into multiple parts.
Borken lines are difficult to read.

Classes

Every class should resemble one simlpe concept, and only one concept.

Hide members and implementation details as much as possible.

Always explicitly disable, or enable, copy constructors and assignment operators.

If a class has virtual methods, it must have a virtual destructor as well.

Must have public methods then members, followed by protected and finally private.

 Correct:

 class Example
 {
 public:
 void PublicMethod() const;
 //Other public methods

 int m_publicData;
 //Other public members

5/15/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 6/10

 protected:
 void ProtectedMethod() const;
 //Other protected methods

 int m_protectedData;
 //Other protected members

 private:
 void PrivateMethod() const;
 //Other private methods

 int m_privateData;
 //Other private members
 };

Overriden virtual functions must be marked with override if using C++11 or newer.

Always use explicit constructors for single argument constructor to avoid implicit-casting.

 Wrong:

 class Example
 {
 public:
 Example(const int startValue);
 };

 Correct:

 class Example
 {
 public:
 explicit Example(const int startValue);
 };

Never give direct access to contained objects. Even returning read-only contained objects
makes code more dependant on other parts. Sometimes this is necessary, though it should
never be necessary to give writable access.

 Wrong:

 class Example
 {
 public:
 ObjectType& GetObject() { return m_object; }
 ObjectType* GetObjectPtr() const { return &m_object; }

 private:

5/15/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 7/10

 ObjectType m_object;
 };

 Acceptable: (with reasoning)

 class Example
 {
 public:
 const ObjectType& GetObject() const { return m_object; } const
 ObjectType* GetObjectrPtr() const { return &m_object; }

 private:
 ObjectType m_object;
 };

You will notice in the wrong example, a non-const pointer to m_object can be returned from a const
method on the Example object, which can be indirectly changing the Example object.

Namespaces

Use namespaces to keep a collection of similar concepts contained.

Never use a namespace or part of a namespace within a header file.

Place function declarations within a namespace, then use the Scope-Resolution Operator to
define the function. Allows the compiler to help spot type-safety errors that would be linker
errors.

 Header File:

 namespace Example
 {
 void DoSomething(const int withValue);
 }

 Source File: Wrong:

 namespace Example
 {
 void DoSomething(const int withValue) { /*Codes*/ }
 }

 Correct:

 void Example::DoSomething(const int withValue) { /*Codes*/ }

5/15/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 8/10

Functions

Naming

Must start with an uppercase letter, and uppercase first letter of each word thereafter, just like
the UpperCamelCase.

Must be clear what the function does from reading the name.

Accessors should be named as follows: GetVariableName() , SetVariableName() .

Never abbreviate function names when the full word is more descriptive.

 HandleMouseClick();

Declarations / Prototypes

Must always exist in a class or namespace of similar functions.

 void DoSomethingWithNothing();

Getters and Setters should be named: GetVariable() , SetVariable() , IsVariable() is also an
acceptable getter for a boolean value.

Function Seperators

Before and after each function a seperator line should be placed to enhance readability, a new line
should exist before and after the seperator line. The seperator line should extend from left margin to
the max width specified in the Code Formatting section of this document. Correct:

Documentation

Must follow the doxygen format, and be placed above the declaration of the function.

 //--

 void Example::DoSomething()
 {
 //Insert code
 }

 //--

5/15/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 9/10

Variables

Naming

Must start with a lowercase, and uppercase first letter of each word thereafter, just like the
lowerCamelCase.

Must be clear what the variable is holding or purpose is, based on the name.

Must never use single letter variables, even for temporary variables except for: loop counter,
using(i , j or k)

Never abbreviate variable or function names when the full word is more descriptive, except for:
itr within a loop iterating a container.

Member variables should start with an m_ following a lowercase letter.

Constants should start with a lowercase letter.

Global variables should be used very rarely, if ever. Use uppercase letters. Locals /
Parameters: elapsedTime Class Members: m_isVisible Constants: thisNeverChanges
 Globals: VISUALSYSTEM

Type-Casting

Should be avoided when possible(including int to float, unsigned to signed, or base to derived).

Allow the type-safety in the C++ language to show weak points in design by avoiding the need
for type-casting. When a cast is necessary, use C++ style casts: static_cast<> ,
dynamic_cast<> etc. Avoid reinterpret_cast<> at all costs since it is essentially undefined

behavior. When a cast is needed, be sure to check value ranges and values to be as safe as
possible.

No C-Style casts are allowed They are potentially very dangerous, properly use static_cast ,
const_cast , reinterpret_cast and dynamic_cast . In general stick with static_cast .

Note: dynamic_cast can only be used if RTTI is turned on, usually disabled by default.

 Wrong:

 float val = 30.0f;
 int intVal = (int)val;

 Correct:

 float val = 30.0f;
 int intVal = static_cast<int>(val);

Dos and Don'ts

Do always initialize a variable to some expected value, NEVER allow it to be undefined!

5/15/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 10/10

Switch Statements

Should have a case for every value of an enum, consider if using the default case is appropriate to
make this happen.

Standard Template Library

The STL is part of the C++ standard, use it instead of customized containers.

Do not using namespace std , instead be explicit by writing: std::string value;

When in need of a container use std::vector by default, otherwise choose the best container.

Use std::string instead of C-style char arrays.

Use std::string::c_str() to exchange if needed.

Macros / Preprocessor

Macros should be avoided at nearly all cost, instead use Enums, Typedefs, Templates and other built
in C++ language features. When using a macro, be sure the use of a macro actually enhances
readability, and avoid using clever preprocessing features that may change from compiler to
compiler. Macro names shall be all uppercase with underscores between words.

