
Philips Healthcare - C# Coding Standard

Version 2.0

(c) 2009, Philips Healthcare

issued by the CCB Coding Standards Philips Healthcare

External Use of this Document

The C# coding standard as defined by Philips Healthcare and published via the TIOBE website
(http://www.tiobe.com) may be used "as-is" by any interested party.

You may copy, adapt, and redistribute this document for non-commercial use or for your own internal use in a
commercial setting. However, you may not republish this document, nor may you publish or distribute any
adaptation of this document for other than non-commercial use or your own internal use, without first
obtaining express written approval from Philips Healthcare. Philips Healthcare will not be liable for any
direct, indirect, special or consequential damages arising out of any use of the document or the performance or
implementation of the contents thereof.

Please send questions and suggestions about the C# coding standard and/or its code checker ClockSharp to
info@tiobe.com.

Table of Contents
Introduction...1

1.1. Objective...1
1.2. Scope..1

General rules (General)..3
Rule 2@105...3

Description..3

Naming conventions (Naming)...4
Rule 3@101...4

Description..5
Rule 3@102...5

Description..5
Rule 3@103...5

Description..6
Rule 3@104...6

Description..6
Rule 3@105...6

Description..6
Rule 3@106...6

Description..7
Rule 3@107...7
Rule 3@108...7

Description..7
Rule 3@109...8

Description..8
Rule 3@110...8

Description..8
Rule 3@111...8

Description..8
Rule 3@112...9

Description..9
Rule 3@113...9

Description..9
Rule 3@120...9

Description..9
Rule 3@122...10

Description..10
Rule 3@201...10

Description..10
Rule 3@202...10

Description..10
Rule 3@203...11

Description..11
Rule 3@204...11

Description..11
Rule 3@301...11

Description..11
Rule 3@302...12

Description..12
Rule 3@303...12

Description..12

Philips Healthcare C# Coding Standard

i

Table of Contents
Naming conventions (Naming)

Rule 3@304...12
Description..12

Rule 3@305...12
Description..13

Rule 3@306...13
Description..13

Rule 3@307...13
Description..13

Rule 3@401...13
Rule 3@402...14

Description..14
Rule 3@501...14

Description..14
Rule 3@503...14

Description..14
Rule 3@504...14

Description..15

Comments and embedded documentation (Comments)...16
Rule 4@101...16

Description..16
Rule 4@103...16
Rule 4@105...16

Description..17
Rule 4@106...17

Description..17

Object lifecycle (Object lifecycle)..19
Rule 5@101...19
Rule 5@102...19

Description..19
Rule 5@106...19

Description..20
Rule 5@107...20

Description..20
Rule 5@108...20

Description..20
Rule 5@111...21

Description..21
Rule 5@112...21

Description..21
Rule 5@113...22

Description..22
Rule 5@114...23

Description..23
Rule 5@116...23

Description..24

Control flow (Control flow)..25
Rule 6@101...25

Description..25

Philips Healthcare C# Coding Standard

ii

Table of Contents
Control flow (Control flow)

Rule 6@102...25
Description..25

Rule 6@103...25
Description..26

Rule 6@105...26
Description..26

Rule 6@106...26
Description..27

Rule 6@109...27
Description..27

Rule 6@112...27
Description..27

Rule 6@115...28
Description..28

Rule 6@118...28
Description..28

Object oriented programming (Object oriented)...30
Rule 7@101...30

Description..30
Rule 7@102...31

Description..31
Rule 7@105...31

Description..31
Rule 7@201...31

Description..32
Rule 7@301...32

Description..32
Rule 7@303...32

Description..32
Rule 7@402...33

Description..33
Rule 7@403...33

Description..33
Rule 7@501...34

Description..34
Rule 7@502...34

Description..34
Rule 7@504...35

Description..35
Rule 7@520...35

Description..35
Rule 7@521...35

Description..35
Rule 7@522...36
Rule 7@525...36

Description..36
Rule 7@526...36

Description..36
Rule 7@530...36
Rule 7@531...36

Philips Healthcare C# Coding Standard

iii

Table of Contents
Object oriented programming (Object oriented)

Rule 7@532...37
Rule 7@601...37

Description..37
Rule 7@602...37
Rule 7@603...37

Description..37
Rule 7@604...38

Description..38
Rule 7@608...38

Description..38

Exceptions (Exceptions)..39
Rule 8@101...39

Description..39
Rule 8@102...39

Description..39
Rule 8@103...40

Description..40
Rule 8@104...40

Description..40
Rule 8@105...41

Description..41
Rule 8@106...41

Description..41
Rule 8@107...41

Description..41
Rule 8@108...42

Description..42
Rule 8@109...42

Description..42
Rule 8@110...42

Description..43
Rule 8@202...43

Description..43
Rule 8@203...43

Description..43
Rule 8@204...44

Description..44

Delegates and events (Delegates and events)..45
Rule 9@101...45

Description..45
Rule 9@102...45

Description..45
Rule 9@103...45

Description..46
Rule 9@104...46

Description..47
Rule 9@105...47

Description..47
Rule 9@106...47

Philips Healthcare C# Coding Standard

iv

Table of Contents
Delegates and events (Delegates and events)

Description..47
Rule 9@107...47

Description..48
Rule 9@108...48

Description..48
Rule 9@110...48

Description..48

Various data types (Data types)...50
Rule 10@201...50

Description..50
Rule 10@202...50

Description..50
Rule 10@203...51

Description..51
Rule 10@301...51

Description..52
Rule 10@401...52

Description..52
Rule 10@403...53

Description..53
Rule 10@404...53

Description..53
Rule 10@405...53

Description..53
Rule 10@406...53

Description..54
Rule 10@407...54

Description..54

Coding style (Coding style)..55
Rule 11@101...55

Description..55
Rule 11@403...55

Description..55
Rule 11@407...55

Description..56
Rule 11@409...56

Description..56
Rule 11@411...56

Description..56

Literature...57

Philips Healthcare C# Coding Standard

v

Introduction
1.1. Objective

This Coding Standard requires or recommends certain practices for developing programs in the C# language.
The objective of this coding standard is to have a positive effect on

Avoidance of errors/bugs, especially the hard-to-find ones.•
Maintainability, by promoting some proven design principles.•
Maintainability, by requiring or recommending a certain unity of style.•
Performance, by dissuading wasteful practices.•

1.2. Scope

This standard pertains to the use of the C# language. With few exceptions, it does not discuss the use of the
.NET class libraries.

This standard does not include rules on how to layout brackets, braces, and code in general.

1.3. Rationale

Reasons to have a coding standard and to comply with it are not given here, except the objectives listed in
section 1.1. In this section the origins of the rules are given and some explanation why these were chosen.

1.3.1. Sources of inspiration

Many of the rules were taken from the MSDN C# Usage Guidelines ([MS Design]). The naming guidelines in
that document are identical to those found in Appendix C of the ECMA C# Language Specification ([C#
Lang]).

Many other recommendations and a few design patterns were also taken from [MS Design].

Some general good practices, most of them concerning Object-Oriented programming, were copied from the
Philips Healthcare C++ Coding Standard ([C++ Coding Standard]).

The numbering scheme and some of the structure have been copied from [C++ Coding Standard].

1.3.2. Contrast with C++

A considerable part of a coding standard for C or C++ could be condensed into a single rule, avoid undefined
behavior, and maybe shun implementation defined behavior. Officially C# does not exhibit any of these,
barring a few minor, well-defined exceptions. Most examples of undefined behavior in C++ will cause an
exception to be thrown in C#. Although this is an improvement on the ?anything might happen? of C++, it is
highly undesirable for post-release software.

1.4. Applicability

This coding standard applies to all C# code that is part of Philips Healthcare software products or directly
supportive to these products. Third party software is constrained by this standard if this software is developed
specifically for Philips Healthcare.

1

1.5. Notational conventions

1.5.1. Rule

A rule should be broken only for compelling reasons where no reasonable alternative can be found. The
author of the violating code shall consult with at least one knowledgeable colleague and a senior designer to
review said necessity. A comment in the code explaining the reason for the violation is mandatory.

1.5.2. Checkable

Rules in this coding standard are marked checkable if automatic verification of compliance is enforced by
static analyzers.

1.5.3. Examples

Please note that the source code formatting in some examples has been chosen for compactness rather than for
demonstrating good practice. The use of a certain compact style in some of the examples is considered
suitable for tiny code fragments, but should not be emulated in ?real? code.

Philips Healthcare C# Coding Standard

2

General rules (General)
Rules

2@105 Do not mix code from different providers in one file

Rule 2@105

Synopsis:Do not mix code from different providers in one file
Language:C#
Level: 6
Category:General

Description

In general, third party code will not comply with this coding standard, so do not put such code in the same file
as code written by Philips.

Also, avoid mixing code from different Philips departments in one file, e.g., do not mix MR code with PII
code. This coding standard does not specify layout rules, so code from both providers may look slightly
different.

3

Naming conventions (Naming)
Rules

3@101 Use US-English for naming identifiers

3@102 Use Pascal and Camel casing for naming identifiers

3@103 Do not use Hungarian notation or add any other type identification to identifiers

3@104 Do not prefix member fields

3@105 Do not use casing to differentiate identifiers

3@106 Use abbreviations with care

3@107 Do not use an underscore in identifiers

3@108 Name an identifier according to its meaning and not its type

3@109 Name namespaces according to a well-defined pattern

3@110 Do not add a suffix to a class or struct name

3@111 Use a noun or a noun phrase to name a class or struct

3@112 Abbreviations with more than two letters should be cased as words

3@113 Prefix interfaces with the letter I

3@120 Use similar names for the default implementation of an interface

3@122 Suffix names of attributes with Attribute

3@201 Do not add an enum suffix to an enumeration type

3@202 Use singular names for enumeration types

3@203 Use a plural name for enumerations representing bitfields

3@204 Do not use letters that can be mistaken for digits, and vice versa

3@301 Add EventHandler to delegates related to events

3@302 Add Callback to delegates related to callback methods

3@303 Do not add a Callback or similar suffix to callback methods

3@304 Use a verb (gerund) for naming an event

3@305 Do not add an Event suffix (or any other type-related suffix) to the name of an
event

3@306 Use an -ing and -ed form to express pre-events and post-events

3@307 Prefix an event handler with On

3@401 Suffix exception classes with Exception

3@402 Do not add code-archive related prefixes to identifiers

3@501 Name DLL assemblies after their containing namespace

3@503 Use Pascal casing for naming source files

3@504 Name the source file to the main class

Rule 3@101

Synopsis:Use US-English for naming identifiers
Language:C#
Level: 6
Category:Naming

4

Description

US-English means:

magnetization, optimizing, realize, ...•
tumor, behavior, ...•
center, millimeter, ...•
ischemic, pediatric, hemodynamic, ...•

Rule 3@102

Synopsis:Use Pascal and Camel casing for naming identifiers
Language:C#
Level: 9
Category:Naming

Description

In Pascal casing the first letter of each word in an identifier is capitalized, e.g., BackColor

In Camel casing only the first letter of the second, third, etc. word in a name is capitalized; for example,
backColor.

The table below provides the casing for the most common types.

Identifier Case Example

Class PascalAppDomain

Enum type PascalErrorLevel

Enum values PascalFatalError

Event PascalValueChange

Exception class PascalWebException

Field camel listItem

Const Field PascalMaximumItems

Read-only Static FieldPascalRedValue

Interface PascalIDisposable

Method PascalToString

Namespace PascalSystem.Drawing

Parameter camel typeName

Property PascalBackColor

For handling abbreviations see [3@112].

Rule 3@103

Synopsis:Do not use Hungarian notation or add any other type identification to identifiers

Philips Healthcare C# Coding Standard

5

Language:C#
Level: 6
Category:Naming

Description

Use of Hungarian notation is deprecated by companies like Microsoft because it introduces a programming
language-dependency and complicates maintenance activities.

Exceptions:

[3@113], [3@122], [3@301], [3@302], [3@307], [3@401].

Rule 3@104

Synopsis:Do not prefix member fields
Language:C#
Level: 9
Category:Naming

Description

Exception:

Member fields can prefixed with an "m" character.

Rule 3@105

Synopsis:Do not use casing to differentiate identifiers
Language:C#
Level: 7
Category:Naming

Description

Some programming languages (e.g. VB.NET) do not support distinguishing identifiers by case, so do not
define a type called A and a in the same context.

This rule applies to namespaces, properties, methods, method parameters, and types. Please note that it is
allowed to have identifiers that differ only in case in distinct categories, e.g. a property BackColor that
wraps the field backColor.

Rule 3@106

Synopsis:Use abbreviations with care
Language:C#
Level: 10
Category:Naming

Philips Healthcare C# Coding Standard

6

Description

Do not contract words in identifiers, but do use well-known abbreviations. For example, do not use GetWin
instead of GetWindow, but do use a well-known abbreviation such as UI instead of UserInterface.

Rule 3@107

Synopsis:Do not use an underscore in identifiers
Language:C#
Level: 8
Category:Naming

Rule 3@108

Synopsis:Name an identifier according to its meaning and not its type
Language:C#
Level: 6
Category:Naming

Description

Avoid using language specific terminology in names of identifiers.

Example:

Do not use a definition like: void Write(double doubleValue);

Instead, use: void Write(double value);

If it is absolutely required to have a uniquely named method for every data type, use Universal Type Names in
the method names. The table below provides the mapping from C# types to Universal types.

C# TYPE NAME UNIVERSAL TYPE NAME

sbyte SByte

byte Byte

short Int16

ushort UInt16

int Int32

uint UInt32

long Int64

ulong UInt64

float Single

double Double

bool Boolean

char Char

string String

object Object

Philips Healthcare C# Coding Standard

7

Based on the example above, the corresponding reading methods may look like this:

double ReadDouble();
long ReadInt64();

Rule 3@109

Synopsis:Name namespaces according to a well-defined pattern
Language:C#
Level: 8
Category:Naming

Description

Namespaces should be written in Pascal casing and named according to the following pattern:

<company>.<technology>.<top-level component>.<bottom-level component>

Rule 3@110

Synopsis:Do not add a suffix to a class or struct name
Language:C#
Level: 9
Category:Naming

Description

Do not add suffixes like Struct or Class to the name of a class or struct.

Exceptions:

[3@122] and [3@401].

Rule 3@111

Synopsis:Use a noun or a noun phrase to name a class or struct
Language:C#
Level: 8
Category:Naming

Description

Also, if the class involved is a derived class, it is a good practice to use a compound name. For example, if
you have a class named Button, deriving from this class may result in a class named BeveledButton.

Philips Healthcare C# Coding Standard

8

Rule 3@112

Synopsis:Abbreviations with more than two letters should be cased as words
Language:C#
Level: 9
Category:Naming

Description

Two-letter abbreviations in Pascal casing have both letters capitalized. In Camel casing this also holds true,
except at the start of an identifier where both letters are written in lower case. With respect to capitalization in
Pascal and Camel casing, abbreviations with more than two letters are treated as ordinary words.

Related to: [3@102]

Examples:

Camel CasingPascal Casing

newImage NewImage

uiEntry UIEntry

pmsMR PmsMR

dicomType DicomType

Rule 3@113

Synopsis:Prefix interfaces with the letter I
Language:C#
Level: 8
Category:Naming

Description

All interfaces should be prefixed with the letter I. Use a noun (e.g. IComponent), noun phrase (e.g.
ICustomAttributeProvider), or an adjective (e.g. IPersistable) to name an interface.

Rule 3@120

Synopsis:Use similar names for the default implementation of an interface
Language:C#
Level: 8
Category:Naming

Description

If you provide a default implementation for a particular interface, use a similar name for the implementing
class. Notice that this only applies to classes that only implement that interface.

Example:

Philips Healthcare C# Coding Standard

9

A class implementing the IComponent interface could be called Component or DefaultComponent.

Rule 3@122

Synopsis:Suffix names of attributes with Attribute
Language:C#
Level: 8
Category:Naming

Description

Although this is not required by the C# compiler, this convention is followed by all built-in attributes

Rule 3@201

Synopsis:Do not add an enum suffix to an enumeration type
Language:C#
Level: 9
Category:Naming

Description

See also [3@103]

Rule 3@202

Synopsis:Use singular names for enumeration types
Language:C#
Level: 7
Category:Naming

Description

For example, do not name an enumeration type Protocols but name it Protocol instead. Consider the
following example in which only one option is allowed.

public enum Protocol
{
 Tcp,
 Udp,
 Http,
 Ftp
}

Philips Healthcare C# Coding Standard

10

Rule 3@203

Synopsis:Use a plural name for enumerations representing bitfields
Language:C#
Level: 7
Category:Naming

Description

Use a plural name for such enumeration types. The following code snippet is a good example of an
enumeration that allows combining multiple options.

[Flags]
public enum SearchOptions
{
 CaseInsensitive = 0x01,
 WholeWordOnly = 0x02,
 AllDocuments = 0x04,
 Backwards = 0x08,
 AllowWildcards = 0x10
}

Rule 3@204

Synopsis:Do not use letters that can be mistaken for digits, and vice versa
Language:C#
Level: 7
Category:Naming

Description

To create obfuscated code, use very short, meaningless names formed from the letters O, o, l, I and the
digits 0 and 1. Anyone reading code like

bool b001 = (lo == l0) ? (I1 == 11) : (lOl != 101);

will marvel at your creativity.

Rule 3@301

Synopsis:Add EventHandler to delegates related to events
Language:C#
Level: 9
Category:Naming

Description

Delegates that are used to define an event handler for an event must be suffixed with EventHandler. For
example, the following declaration is correct for a Close event.

public delegate CloseEventHandler(object sender, EventArgs arguments)

Philips Healthcare C# Coding Standard

11

Rule 3@302

Synopsis:Add Callback to delegates related to callback methods
Language:C#
Level: 10
Category:Naming

Description

Delegates that are used to pass a reference to a callback method (so not an event) must be suffixed with
Callback. For example:

public delegate AsyncIOFinishedCallback(IpcClient client, string message);

Rule 3@303

Synopsis:Do not add a Callback or similar suffix to callback methods
Language:C#
Level: 9
Category:Naming

Description

Do not add suffixes like Callback or CB to indicate that methods are going to be called through a callback
delegate. You cannot make assumptions on whether methods will be called through a delegate or not. An
end-user may decide to use Asynchronous Delegate Invocation to execute the method.

Rule 3@304

Synopsis:Use a verb (gerund) for naming an event
Language:C#
Level: 10
Category:Naming

Description

Good examples of events are Closing, Minimizing, and Arriving. For example, the declaration for
the Closing event may look like this:

public event ClosingEventHandler Closing;

Rule 3@305

Synopsis:Do not add an Event suffix (or any other type-related suffix) to the name of an event
Language:C#

Philips Healthcare C# Coding Standard

12

Level: 9
Category:Naming

Description

See also [3@103].

Rule 3@306

Synopsis:Use an -ing and -ed form to express pre-events and post-events
Language:C#
Level: 9
Category:Naming

Description

Do not use a pattern like BeginXxx and EndXxx. If you want to provide distinct events for expressing a
point of time before and a point of time after a certain occurrence such as a validation event, do not use a
pattern like BeforeValidation and AfterValidation. Instead, use a Validating and
Validated pattern.

Rule 3@307

Synopsis:Prefix an event handler with On
Language:C#
Level: 6
Category:Naming

Description

It is good practice to prefix the method that is registered as an event handler with On. For example, a method
that handles the Closing event should be named OnClosing().

In some situations, you might be faced with multiple classes exposing the same event name. To allow separate
event handlers use a more intuitive name for the event handler, as long as it is prefixed with On.

Rule 3@401

Synopsis:Suffix exception classes with Exception
Language:C#
Level: 10
Category:Naming

Philips Healthcare C# Coding Standard

13

Rule 3@402

Synopsis:Do not add code-archive related prefixes to identifiers
Language:C#
Level: 8
Category:Naming

Description

For example do not use code archive location (e.g. folder name) as a prefix for classes or fields. However, it is
allowed to have some consistent naming scheme for related source files (e.g. belonging to a component or
class hierarchy).

Rule 3@501

Synopsis:Name DLL assemblies after their containing namespace
Language:C#
Level: 8
Category:Naming

Description

To allow storing assemblies in the Global Assembly Cache, their names must be unique. Therefore, use the
namespace name as a prefix of the name of the assembly. As an example, consider a group of classes
organized under the namespace Philips.PmsMR.Platform.OSInterface. In that case, the
assembly generated from those classes will be called
Philips.PmsMR.Platform.OSInterface.dll.

If multiple assemblies are built from the same namespace, it is allowed to append a unique postfix to the
namespace name.

Rule 3@503

Synopsis:Use Pascal casing for naming source files
Language:C#
Level: 9
Category:Naming

Description

Do not use the underscore character and do not use casing to differentiate names of files.

Rule 3@504

Synopsis:Name the source file to the main class
Language:C#

Philips Healthcare C# Coding Standard

14

Level: 7
Category:Naming

Description

In addition, do not put more than one major class plus its auxiliary classes (such as EventArgs-derived
classes) in one source file.

Exception:

If a partial class is used, then the other files for this class can be named as MainClass.PostFix.cs,
whereby Postfix is a meaningful name which describes the contents and not just MainClass.2.cs.

Example: MyForm.cs and MyForm.Designer.cs.

Philips Healthcare C# Coding Standard

15

Comments and embedded documentation
(Comments)
Rules

4@101 Each file shall contain a header block

4@103 Use // for comments

4@105 All comments shall be written in US English

4@106 Use XML tags for documenting types and members

Rule 4@101

Synopsis:Each file shall contain a header block
Language:C#
Level: 10
Category:Comments

Description

The header block must consist of a #region block containing the following copyright statement and the
name of the file.

#region Copyright Koninklijke Philips Electronics N.V. 2008
//
// All rights are reserved. Reproduction or transmission in whole or in part, in
// any form or by any means, electronic, mechanical or otherwise, is prohibited
// without the prior written consent of the copyright owner.
//
// Filename: PatientAdministration.cs
//
#endregion

Rule 4@103

Synopsis:Use // for comments
Language:C#
Level: 9
Category:Comments

Rule 4@105

Synopsis:All comments shall be written in US English
Language:C#
Level: 10
Category:Comments

16

Description

See also [3@101].

Rule 4@106

Synopsis:Use XML tags for documenting types and members
Language:C#
Level: 9
Category:Comments

Description

All public and protected types, methods, fields, events, delegates, etc. shall be documented using XML tags.
Using these tags will allow IntelliSense to provide useful details while using the types. Also, automatic
documentation generation tooling relies on these tags.

Section tags define the different sections within the type documentation.

SECTION
TAGS

DESCRIPTION LOCATION

<summary> Short description type or member

<remarks> Describes preconditions and other additional information.type or member

<param> Describes the parameters of a method method

<returns> Describes the return value of a method method

<exception> Lists the exceptions that a method or property can throwmethod, even or property

<value>
Describes the type of the data a property accepts and/or
returns

property

<example>
Contains examples (code or text) related to a member or a
type

type or member

<seealso> Adds an entry to the See Also section type or member

<overloads> Provides a summary for multiple overloads of a method
first method in a overload
list.

Inline tags can be used within the section tags.

INLINE TAGS DESCRIPTION

<see> Creates a hyperlink to another member or type

<paramref> Creates a checked reference to a parameter
Markup tags are used to apply special formatting to a part of a section.

MARKUP TAGS DESCRIPTION

<code> Changes the indentation policy for code examples

<c> Changes the font to a fixed-wide font (often used with the <code> tag)

<para> Creates a new paragraph

<list> Creates a bulleted list, numbered list, or a table

 Bold typeface

<i> Italics typeface
Exception:

Philips Healthcare C# Coding Standard

17

In an inheritance hierarchy, do not repeat the documentation but use the <see> tag to refer to the base class
or interface member.

Exception:

Private and nested classes do not have to be documented in this manner.

Philips Healthcare C# Coding Standard

18

Object lifecycle (Object lifecycle)
Rules

5@101 Declare and initialize variables close to where they are used

5@102 If possible, initialize variables at the point of declaration

5@106 Use a public static read-only field to define predefined object instances

5@107 Set a reference field to null to tell the garbage collector that the object is no longer
needed

5@108 Do not `shadow? a name in an outer scope

5@111 Avoid implementing a destructor

5@112 If a destructor is needed, also use GC.SuppressFinalize

5@113 Implement IDisposable if a class uses unmanaged/expensive resources or owns
disposable objects

5@114 Do not access any reference type members in the destructor

5@116 Always document when a member returns a copy of a reference type or array

Rule 5@101

Synopsis:Declare and initialize variables close to where they are used
Language:C#
Level: 7
Category:Object lifecycle

Rule 5@102

Synopsis: If possible, initialize variables at the point of declaration
Language:C#
Level: 7
Category:Object lifecycle

Description

Avoid the C style where all variables have to be defined at the beginning of a block, but rather define and
initialize each variable at the point where it is needed.

Rule 5@106

Synopsis:Use a public static read-only field to define predefined object instances
Language:C#
Level: 4
Category:Object lifecycle

19

Description

For example, consider a Color class/struct that expresses a certain color internally as red, green, and blue
components, and this class has a constructor taking a numeric value, then this class may expose several
predefined colors like this.

public struct Color
{
 public static readonly Color Red = new Color(0xFF0000);
 public static readonly Color Black = new Color(0x000000);
 public static readonly Color White = new Color(0xFFFFFF);

 public Color(int rgb)
 {
 // implementation
 }
}

Rule 5@107

Synopsis:Set a reference field to null to tell the garbage collector that the object is no longer needed
Language:C#
Level: 4
Category:Object lifecycle

Description

Setting reference fields to null may improve memory usage because the object involved will be
unreferenced from that point on, allowing the garbage collector (GC) to clean-up the object much earlier.
Please note that this rule does not have to be followed for a variable that is about to go out of scope.

Rule 5@108

Synopsis:Do not `shadow? a name in an outer scope
Language:C#
Level: 2
Category:Object lifecycle

Description

Repeating a name that already occurs in an outer scope is seldom intended and may be surprising in
maintenance, although the behaviour is well-defined.

int foo = something;
?
if (whatever)
{
 double foo = 12.34;
 double anotherFoo = foo; // Violation.
}

Exception:

Philips Healthcare C# Coding Standard

20

In case a method parameter has the same name as a field then the following construction can be used:
this.x = x

int foo = something;
?
public void SomeMethod(int foo)
{
 this.foo = foo; // No violation
 int anotherFoo = foo; // However, this again is a violation!
}

Rule 5@111

Synopsis:Avoid implementing a destructor
Language:C#
Level: 4
Category:Object lifecycle

Description

If a destructor is required, adhere to Rule 5@112 and Rule 5@113.

The use of destructors in C# is demoted since it introduces a severe performance penalty due to way the
garbage collector works. It is also a bad design pattern to clean up any resources in the destructor since you
cannot predict at which time the destructor is called (in other words, it is non-deterministic).

Notice that C# destructors are not really destructors as in C++. They are just a C# compiler feature to
represent CLR Finalizers.

Rule 5@112

Synopsis: If a destructor is needed, also use GC.SuppressFinalize
Language:C#
Level: 3
Category:Object lifecycle

Description

If a destructor is needed to verify that a user has called certain cleanup methods such as Close() on a
IpcPeer object, call GC.SuppressFinalize in the Close() method. This ensures that the destructor
is ignored if the user is properly using the class. The following snippet illustrates this pattern.

public class IpcPeer
{
 bool connected = false;

 public void Connect()
 {
 // Do some work and then change the state of this object.
 connected = true;
 }

 public void Close()

Philips Healthcare C# Coding Standard

21

 {
 // Close the connection, change the state, and instruct garbage collector
 // not to call the destructor.
 connected = false;
 GC.SuppressFinalize(this);
 }

 ~IpcPeer()
 {
 // If the destructor is called, then Close() was not called.
 if (connected)
 {
 // Warning! User has not called Close(). Notice that you can?t
 // call Close() from here because the objects involved may
 // have already been garbage collected (see Rule 5@113).
 }
 }
}

Rule 5@113

Synopsis: Implement IDisposable if a class uses unmanaged/expensive resources or owns disposable
objects

Language:C#
Level: 2
Category:Object lifecycle

Description

If a class uses unmanaged resources such as objects returned by C/C++ DLLs, or expensive resources that
must be disposed of as soon as possible, you must implement the IDisposable interface to allow class
users to explicitly release such resources.

A class should implement the IDisposable interface, in case it creates instances of objects that implement the
IDisposable interfaces and a reference to that instances is kept (note that if the class transfer ownership of the
create instance to another object, then it doesn't need to implement IDisposable).

The follow code snippet shows the pattern to use for such scenarios.

public class ResourceHolder : IDisposable
{
 ///<summary>
 ///Implementation of the IDisposable interface
 ///</summary>
 public void Dispose()
 {
 // Call internal Dispose(bool)
 Dispose(true);

 // Prevent the destructor from being called
 GC.SuppressFinalize(this);
 }
 ///<summary>
 /// Central method for cleaning up resources
 ///</summary>
 protected virtual void Dispose(bool disposing)
 {
 // If disposing is true, then this method was called through the
 // public Dispose()

Philips Healthcare C# Coding Standard

22

 if (disposing)
 {
 // Release or cleanup managed resources
 }
 // Always release or cleanup (any) unmanaged resources
 }
 ~ResourceHolder()
 {
 // Since other managed objects are disposed automatically, we
 // should not try to dispose any managed resources (see Rule 5@114).
 // We therefore pass false to Dispose()
 Dispose(false);
 }
}

If another class derives from this class, then this class should only override the Dispose(bool) method of
the base class. It should not implement IDisposable itself, nor provide a destructor. The base class?s
`destructor? is automatically called.

public class DerivedResourceHolder : ResourceHolder
{
 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 // Release or cleanup managed resources of this derived
 // class only.
 }
 // Always release or cleanup (any) unmanaged resources.
 // Call Dispose on our base class.
 base.Dispose(disposing);
 }
}

Rule 5@114

Synopsis:Do not access any reference type members in the destructor
Language:C#
Level: 2
Category:Object lifecycle

Description

When the destructor is called by the garbage collector, it is very possible that some or all of the objects
referenced by class members are already garbage collected, so dereferencing those objects may cause
exceptions to be thrown.

Only value type members can be accessed (since they live on the stack).

Rule 5@116

Synopsis:Always document when a member returns a copy of a reference type or array
Language:C#
Level: 5
Category:Object lifecycle

Philips Healthcare C# Coding Standard

23

Description

By default, all members that need to return an internal object or an array of objects will return a reference to
that object or array. In some cases, it is safer to return a copy of an object or an array of objects. In such case,
always clearly document this in the specification.

Philips Healthcare C# Coding Standard

24

Control flow (Control flow)
Rules

6@101 Do not change a loop variable inside a for loop block

6@102 Update loop variables close to where the loop condition is specified

6@103 All flow control primitives (if, else, while, for, do, switch) shall be followed by a block, even if it is
empty

6@105 All switch statements shall have a default label as the last case label

6@106 An else sub-statement of an if statement shall not be an if statement without an else part

6@109 Avoid multiple or conditional return statements

6@112 Do not make explicit comparisons to true or false

6@115 Do not access a modified object more than once in an expression

6@118 Do not use selection statements (if, switch) instead of a simple assignment or initialization

Rule 6@101

Synopsis:Do not change a loop variable inside a for loop block
Language:C#
Level: 2
Category:Control flow

Description

Updating the loop variable within the loop body is generally considered confusing, even more so if the loop
variable is modified in more than one place. This rule also applies to foreach loops.

Rule 6@102

Synopsis:Update loop variables close to where the loop condition is specified
Language:C#
Level: 4
Category:Control flow

Description

This makes understanding the loop much easier.

Rule 6@103

Synopsis:All flow control primitives (if, else, while, for, do, switch) shall be followed by a block, even if it is
empty

Language:C#
Level: 3
Category:Control flow

25

Description

Example 1:

if (DoAction())
{
 result = true;
}

Example 2:

// Count number of elements in array.
for (int i = 0; i < y; i++)
{
}

Exceptions:

an "else" statement may directly followed by another "if"•
An if clause, followed by a single statement, does not have to enclose that single statement in a block,
provided that the entire statement is written on a single line. Of course the exception is intended for
those cases where it improves readability. Please note that the entire statement must be a one-liner (of
reasonable length), so it is not applicable to complex conditions. Also note that the exception is only
made for if (without else), not for while etc. Examples:

if (failure) throw new InvalidOperationException("Failure!");
if (x < 10) x = 0;

Rationale for the exception: code readability can be improved because the one-liner saves vertical
space (by a factor of 4). The lurking danger in later maintenance, where someone might add a
statement intending it to be subject to the condition, is absent in the one-liner.

•

Rule 6@105

Synopsis:All switch statements shall have a default label as the last case label
Language:C#
Level: 2
Category:Control flow

Description

A comment such as ?no action? is recommended where this is the explicit intention. If the default case should
be unreachable, an assertion to this effect is recommended.

If the default label is always the last one, it is easy to locate.

Rule 6@106

Synopsis:An else sub-statement of an if statement shall not be an if statement without an else part
Language:C#

Philips Healthcare C# Coding Standard

26

Level: 5
Category:Control flow

Description

The intention of this rule, which applies to else-if constructs, is the same as in [6@105]. Consider the
following example.

void Foo(string answer)
{
 if ("no" == answer)
 {
 Console.WriteLine("You answered with No");
 }
 else if ("yes" == answer)
 {
 Console.WriteLine("You answered with Yes");
 }
 else
 {
 // This block is required, even though you might not care of any other
 // answers than "yes" and "no".
 }

Rule 6@109

Synopsis:Avoid multiple or conditional return statements
Language:C#
Level: 9
Category:Control flow

Description

One entry, one exit is a sound principle and keeps control flow simple. However, if some cases, such as when
preconditions are checked, it may be good practice to exit a method immediately when a certain precondition
is not met.

Rule 6@112

Synopsis:Do not make explicit comparisons to true or false
Language:C#
Level: 9
Category:Control flow

Description

It is usually bad style to compare a bool-type expression to true or false.

Example:

while (condition == false) // wrong; bad style
while (condition != true) // also wrong
while (((condition == true) == true) == true) // where do you stop?

Philips Healthcare C# Coding Standard

27

while (condition) // OK

Rule 6@115

Synopsis:Do not access a modified object more than once in an expression
Language:C#
Level: 5
Category:Control flow

Description

The evaluation order of sub-expressions within an expression is defined in C#, in contrast to C or C++, but
such code is hard to understand.

Example:

v[i] = ++c; // right
v[i] = ++i; // wrong: is v[i] or v[++i] being assigned to?
i = i + 1; // right
i = ++i + 1; // wrong and useless; i += 2 would be clearer

Rule 6@118

Synopsis:Do not use selection statements (if, switch) instead of a simple assignment or initialization
Language:C#
Level: 5
Category:Control flow

Description

Express your intentions directly. For example, rather than

bool pos;
if (val > 0)
{
 pos = true;
}
else
{
 pos = false;
}

or (slightly better)

bool pos = (val > 0) ? true : false;

write

bool pos;
pos = (val > 0); // single assignment

or even better

Philips Healthcare C# Coding Standard

28

bool pos = (val > 0); // initialization

Philips Healthcare C# Coding Standard

29

Object oriented programming (Object oriented)
Rules

7@101 Declare all fields (data members) private

7@102 Provide a default private constructor if there are only static methods and properties on a class

7@105 Explicitly define a protected constructor on an abstract base class

7@201 Selection statements (if-else and switch) should be used when the control flow depends on an
object's value; dynamic binding should be used when the control flow depends on the object's type

7@301 All variants of an overloaded method shall be used for the same purpose and have similar behavior

7@303 If you must provide the ability to override a method, make only the most complete overload virtual
and define the other operations in terms of it

7@402 Use code to describe preconditions, postconditions, exceptions, and class invariants

7@403 It shall be possible to use a reference to an object of a derived class wherever a reference to that
object?s base class object is used

7@501 Do not overload any `modifying? operators on a class type

7@502 Do not modify the value of any of the operands in the implementation of an overloaded operator

7@504 Use a struct when value semantics are desired

7@520 Implement the GetHashCode method whenever you implement the Equals method

7@521 Override the Equals method whenever you implement the == operator, and make them do the
same thing

7@522 Override the Equals method any time you implement the IComparable Interface

7@525 Consider implementing the Equals method on value types

7@526 Reference types should not override the equality operator (==)

7@530 Consider implementing operator overloading for the equality (==), not equal (!=), less than (<), and
greater than (>) operators when you implement IComparable

7@531 Consider overloading the equality operator (==), when you overload the addition (+) operator and/or
subtraction (-) operator

7@532 Consider implementing all relational operators (<, <=, >, >=) if you implement any

7@601 Allow properties to be set in any order

7@602 Use a property rather than a method when the member is a logical data member

7@603 Use a method rather than a property when this is more appropriate

7@604 Do not create a constructor that does not yield a fully initialized object

7@608 Always check the result of an as operation

Rule 7@101

Synopsis:Declare all fields (data members) private
Language:C#
Level: 2
Category:Object oriented

Description

An honored principle, stated in both [C++ Coding Standard] and [MS Design].

30

Exceptions to this rule are static readonly fields and const fields, which may have any accessibility
deemed appropriate. See also [5@106].

Rule 7@102

Synopsis:Provide a default private constructor if there are only static methods and properties on a
class

Language:C#
Level: 5
Category:Object oriented

Description

Instantiating such a class is pointless.

Exceptions:

In case the class is defined as static, then the private constructor is not required.•
In case the class is defined as abstract, then the protected constructor is required, see [7@105].•

Rule 7@105

Synopsis:Explicitly define a protected constructor on an abstract base class
Language:C#
Level: 3
Category:Object oriented

Description

Of course an abstract class cannot be instantiated, so a public constructor should be harmless. However, [MS
Design] states:

Many compilers will insert a public or protected constructor if you do not. Therefore, for better
documentation and readability of your source code, you should explicitly define a protected constructor
on all abstract classes.

Rule 7@201

Synopsis:Selection statements (if-else and switch) should be used when the control flow depends on
an object's value; dynamic binding should be used when the control flow depends on the object's
type

Language:C#
Level: 9
Category:Object oriented

Philips Healthcare C# Coding Standard

31

Description

This is a general OO principle. Please note that it is usually a design error to write a selection statement that
queries the type of an object (keywords typeof, is).

Exception:

Using a selection statement to determine if some object implements one or more optional interfaces is a valid
construct though.

Rule 7@301

Synopsis:All variants of an overloaded method shall be used for the same purpose and have similar behavior
Language:C#
Level: 3
Category:Object oriented

Description

Doing otherwise is against the Principle of Least Surprise.

Rule 7@303

Synopsis: If you must provide the ability to override a method, make only the most complete overload virtual
and define the other operations in terms of it

Language:C#
Level: 6
Category:Object oriented

Description

Using the pattern illustrated below requires a derived class to only override the virtual method. Since all the
other methods are implemented by calling the most complete overload, they will automatically use the new
implementation provided by the derived class.

public class MultipleOverrideDemo
{
 private string someText;

 public MultipleOverrideDemo(string s)
 {
 this.someText = s;
 }

 public int IndexOf(string s)
 {
 return IndexOf(s, 0);
 }

 public int IndexOf(string s, int startIndex)
 {
 return IndexOf(s, startIndex, someText.Length - startIndex);
 }

Philips Healthcare C# Coding Standard

32

 // Use virtual for this one.
 public virtual int IndexOf(string s, int startIndex, int count)
 {
 return someText.IndexOf(s, startIndex, count);
 }
}

An even better approach, not required by this coding standard, is to refrain from making virtual methods
public, but to give them protected accessibility, changing the sample above into:

public class MultipleOverrideDemo
{
 // same as above ...
 public int IndexOf(string s, int startIndex, int count)
 {
 return InternalIndexOf(s, startIndex, count);
 }

 // Use virtual for this one.
 protected virtual int InternalIndexOf(string s, int startIndex, int count)
 {
 return someText.IndexOf(s, startIndex, count);
 }
}

Rule 7@402

Synopsis:Use code to describe preconditions, postconditions, exceptions, and class invariants
Language:C#
Level: 10
Category:Object oriented

Description

Compilable preconditions etc. are testable and longer lasting than just comments.

The exact form (e.g. assertions, special Design By Contract functions such as require and ensure) is not
discussed here.

Rule 7@403

Synopsis: It shall be possible to use a reference to an object of a derived class wherever a reference to that
object?s base class object is used

Language:C#
Level: 3
Category:Object oriented

Description

This rule is known as the Liskov Substitution Principle, (see [Liskov 88]), often abbreviated to LSP. Please
note that an interface is also regarded as a base class in this context.

Philips Healthcare C# Coding Standard

33

Rule 7@501

Synopsis:Do not overload any `modifying? operators on a class type
Language:C#
Level: 6
Category:Object oriented

Description

In this context the `modifying? operators are those that have a corresponding assignment operator, i.e. the
non-unary versions of +, -, *, /, %, &, |, ^, << and >>.

There is very little literature regarding operator overloading in C#. Therefore it is wise to approach this feature
with some caution.

Overloading operators on a struct type is good practice, since it is a value type. The ,code>class is a
reference type and users will probably expect reference semantics, which are not provided by most operators.

Consider a class Foo with an overloaded operator+(int), and thus an impicitly overloaded
operator+=(int). If we define the function AddTwenty as follows:

public static void AddTwenty (Foo f)
{
 f += 20;
}

Then this function has no net effect:

{
 Foo bar = new Foo(5);
 AddTwenty (bar);
 // note that `bar? is unchanged
 // the Foo object with value 25 is on its way to the GC...
}

The exception to this rule is a class type that has complete value semantics, like System.String.

Rule 7@502

Synopsis:Do not modify the value of any of the operands in the implementation of an overloaded operator
Language:C#
Level: 1
Category:Object oriented

Description

This rule can be found in a non-normative clause of [C# Lang], section 17.9.1. Breaking this rule gives
counter-intuitive results.

Philips Healthcare C# Coding Standard

34

Rule 7@504

Synopsis:Use a struct when value semantics are desired
Language:C#
Level: 6
Category:Object oriented

Description

More precisely, a struct should be considered for types that meet any of the following criteria:

Act like primitive types.•
Have an instance size under ±16 bytes.•
Are immutable.•
Value semantics are desirable.•

Remember that a struct cannot be derived from.

Rule 7@520

Synopsis: Implement the GetHashCode method whenever you implement the Equals method
Language:C#
Level: 1
Category:Object oriented

Description

This keeps GetHashCode and Equals synchronized.

Rule 7@521

Synopsis:Override the Equals method whenever you implement the == operator, and make them do the
same thing

Language:C#
Level: 1
Category:Object oriented

Description

This allows infrastructure code such as Hashtable and ArrayList, which use the Equals method, to
behave the same way as user code written using the equality operator.

Note:

For value types, the other way around applies also, i.e., whenever you override the Equals method, then also
also implement the equality operator.

Philips Healthcare C# Coding Standard

35

Rule 7@522

Synopsis:Override the Equals method any time you implement the IComparable Interface
Language:C#
Level: 1
Category:Object oriented

Rule 7@525

Synopsis:Consider implementing the Equals method on value types
Language:C#
Level: 3
Category:Object oriented

Description

On value types the default implementation on System.ValueType will not perform as well as your custom
implementation.

Rule 7@526

Synopsis:Reference types should not override the equality operator (==)
Language:C#
Level: 1
Category:Object oriented

Description

The default implementation is sufficient.

Rule 7@530

Synopsis:Consider implementing operator overloading for the equality (==), not equal (!=), less than (<),
and greater than (>) operators when you implement IComparable

Language:C#
Level: 3
Category:Object oriented

Rule 7@531

Synopsis:Consider overloading the equality operator (==), when you overload the addition (+) operator
and/or subtraction (-) operator

Language:C#
Level: 2
Category:Object oriented

Philips Healthcare C# Coding Standard

36

Rule 7@532

Synopsis:Consider implementing all relational operators (<, <=, >, >=) if you implement any
Language:C#
Level: 2
Category:Object oriented

Rule 7@601

Synopsis:Allow properties to be set in any order
Language:C#
Level: 4
Category:Object oriented

Description

Properties should be stateless with respect to other properties, i.e. there should not be an observable difference
between first setting property A and then B and its reverse.

Rule 7@602

Synopsis:Use a property rather than a method when the member is a logical data member
Language:C#
Level: 9
Category:Object oriented

Rule 7@603

Synopsis:Use a method rather than a property when this is more appropriate
Language:C#
Level: 9
Category:Object oriented

Description

In some cases a method is better than a property:

The operation is a conversion, such as Object.ToString.•
The operation is expensive enough that you want to communicate to the user that they should consider
caching the result.

•

Obtaining a property value using the get accessor would have an observable side effect.•
Calling the member twice in succession produces different results.•
The order of execution is important. See [7@601].•
The member is static but returns a value that can be changed.•
The member returns a copy of an internal array or other reference type.•
Only a set accessor would be supplied. Write-only properties tend to be confusing.•

Philips Healthcare C# Coding Standard

37

Rule 7@604

Synopsis:Do not create a constructor that does not yield a fully initialized object
Language:C#
Level: 2
Category:Object oriented

Description

Only create constructors that construct objects that are fully initialized. There shall be no need to set
additional properties. A private constructor is exempt from this rule.

Rule 7@608

Synopsis:Always check the result of an as operation
Language:C#
Level: 2
Category:Object oriented

Description

If you use as to obtain a certain interface reference from an object, always ensure that this operation does not
return null. Failure to do so may cause a NullReferenceException at a later stage if the object did
not implement that interface.

Philips Healthcare C# Coding Standard

38

Exceptions (Exceptions)
Rules

8@101 Only throw exceptions in exceptional situations

8@102 Do not throw exceptions from unexpected locations

8@103 Only re-throw exceptions when you want to specialize the exception

8@104 List the explicit exceptions a method or property can throw

8@105 Always log that an exception is thrown

8@106 Allow callers to prevent exceptions by providing a method or property that returns the
object?s state

8@107 Use standard exceptions

8@108 Throw informational exceptions

8@109 Throw the most specific exception possible

8@110 Only catch the exceptions explicitly mentioned in the documentation

8@202 Provide common constructors for custom exceptions

8@203 Avoid side-effects when throwing recoverable exceptions

8@204 Do not throw an exception from inside an exception constructor

Rule 8@101

Synopsis:Only throw exceptions in exceptional situations
Language:C#
Level: 3
Category:Exceptions

Description

Do not throw exceptions in situations that are normal or expected (e.g. end-of-file). Use return values or status
enumerations instead. In general, try to design classes that do not throw exceptions in the normal flow of
control. However, do throw exceptions that a user is not allowed to catch when a situation occurs that may
indicate a design error in the way your class is used.

Rule 8@102

Synopsis:Do not throw exceptions from unexpected locations
Language:C#
Level: 1
Category:Exceptions

Description

Throwing an exception from some locations are unexpected and can cause problems. For example when you
call an exception from inside a destructor, the CLR will stop executing the destructor, and pass the exception
to the base class destructor (if any). If there is no base class, then the destructor is discarded.

Do not throw exceptions from the following locations:

39

Location Note

Event accessor
methods

The followings exceptions are allowed: System.InvalidOperationException,
System.NotSupportedException and System.ArgumentException. This also includes
their derivates.

Equals methods
An Equals method should return true or false. Return false instead of an exception if the
arguments to not match.

GetHashCode()
methods

GetHashCode() should always return a value, otherwise you lose values in a hash table.

ToString methods
This method is also used by the debugger to display information about objects in a
string format. Therefore it should not raise an exception.

Static constructors A type becomes unusable if an exception is thrown from its static constructor.

Finalizers
(destructors)

Throwing an exception from a finalizer can cause a process to crash.

Dispose methods
Dispose methods are often called in finally clauses as part of cleanup. Also
Dispose(false) is called from a finalizer, which in itself should not throw an exception
als.

Equality Operators
(==, !=)

Like the Equals methods, the operators should always return true or false.

Implicit cast
operators

A user is usually unaware that an implicit cast operators is called, therefore throwing an
exception from them is unexpected and should not be done.

Exception
constructor

Calling a exception constructor is done to throw an exception. If the constructor throws
an exception, then this is confusing.

Rule 8@103

Synopsis:Only re-throw exceptions when you want to specialize the exception
Language:C#
Level: 3
Category:Exceptions

Description

Only catch and re-throw exceptions if you want to add additional information and/or change the type of the
exception into a more specific exception. In the latter case, set the InnerException property of the new
exception to the caught exception.

Rule 8@104

Synopsis:List the explicit exceptions a method or property can throw
Language:C#
Level: 8
Category:Exceptions

Description

Describe the recoverable exceptions using the <exception> tag.

Philips Healthcare C# Coding Standard

40

Explicit exceptions are the ones that a method or property explicitly throws from its implementation and
which users are allowed to catch. Exceptions thrown by .NET framework classes and methods used by this
implementation do not have to be listed here.

Rule 8@105

Synopsis:Always log that an exception is thrown
Language:C#
Level: 8
Category:Exceptions

Description

Logging ensures that if the caller catches your exception and discards it, traces of this exception can be
recovered at a later stage.

Rule 8@106

Synopsis:Allow callers to prevent exceptions by providing a method or property that returns the object?s
state

Language:C#
Level: 8
Category:Exceptions

Description

For example, consider a communication layer that will throw an InvalidOperationException when
an attempt is made to call Send() when no connection is available. To allow preventing such a situation,
provide a property such as Connected to allow the caller to determine if a connection is available before
attempting an operation.

Rule 8@107

Synopsis:Use standard exceptions
Language:C#
Level: 3
Category:Exceptions

Description

The following list of exceptions are too generic and should not be raised directly by your code:

System.Exception•
System.ApplicationException•
Any exception which is reserved for use by the CLR only (check MSDN for this)•

Philips Healthcare C# Coding Standard

41

The .NET framework already provides a set of common exceptions. The table below summarizes the most
common exceptions that are available for applications.

EXCEPTION CONDITION

IndexOutOfRangeException Indexing an array or indexable collection outside its valid range.

InvalidOperationException
An action is performed which is not valid considering the object?s current
state.

NotSupportedException
An action is performed which is may be valid in the future, but is not
supported.

ArgumentException An incorrect argument is supplied.

ArgumentNullException
A null reference is supplied as a method?s parameter that does not allow
null.

ArgumentOutOfRangeExceptionAn argument is not within the required range.

Rule 8@108

Synopsis:Throw informational exceptions
Language:C#
Level: 6
Category:Exceptions

Description

When you instantiate a new exception, set its Message property to a descriptive message that will help the
caller to diagnose the problem. For example, if an argument was incorrect, indicate which argument was the
cause of the problem. Also mention the name (if available) of the object involved.

Also, if you design a new exception class, note that it is possible to add custom properties that can provide
additional details to the caller.

Rule 8@109

Synopsis:Throw the most specific exception possible
Language:C#
Level: 6
Category:Exceptions

Description

Do not throw a generic exception if a more specific one is available (related to [Rec:8@108]).

Rule 8@110

Synopsis:Only catch the exceptions explicitly mentioned in the documentation
Language:C#
Level: 1

Philips Healthcare C# Coding Standard

42

Category:Exceptions

Description

Moreover, do not catch the base class Exception, SystemException or ApplicationException.
Exceptions of those classes generally mean that a non-recoverable problem has occurred.

Exception:

It is allowed to catch one of the mentioned base exceptions, if it is rethrown at the end of the catch block. In
order to preserve the stack details, use "throw;".

Example:

try
{
 ...
} catch (Exception e)
{
 ... // For example do some logging here or close some resource.
 throw;
}

Rule 8@202

Synopsis:Provide common constructors for custom exceptions
Language:C#
Level: 5
Category:Exceptions

Description

It is advised to provide the three common constructors that all standard exceptions provide as well. These
include:

XxxException()•
XxxException(string message)•
XxxException(string message, Exception innerException)•

Rule 8@203

Synopsis:Avoid side-effects when throwing recoverable exceptions
Language:C#
Level: 1
Category:Exceptions

Description

When you throw a recoverable exception, make sure that the object involved stays in a usable and predictable
state. With usable it is meant that the caller can catch the exception, take any necessary actions, and continue
to use the object again. With predictable is meant that the caller can make logical assumptions on the state of

Philips Healthcare C# Coding Standard

43

the object.

For instance, if during the process of adding a new item to a list, an exception is raised, then the caller may
safely assume that the item has not been added, and another attempt to re-add it is possible.

Rule 8@204

Synopsis:Do not throw an exception from inside an exception constructor
Language:C#
Level: 1
Category:Exceptions

Description

Throwing an exception from inside an exception's constructor will stop the construction of the exception
being built, and hence, preventing the exception from getting thrown. The other exception is thrown, but this
can be confusing to the user of the class or method concerned.

Philips Healthcare C# Coding Standard

44

Delegates and events (Delegates and events)
Rules

9@101 Do not make assumptions on the object's state after raising an event

9@102 Always document from which thread an event handler is called

9@103 Raise events through a protected virtual method

9@104 Use the sender/arguments signature for event handlers

9@105 Implement add/remove accessors if the number of handlers for an event must be
limited

9@106 Consider providing property-changed events

9@107 Consider an interface instead of a delegate

9@108 Use delegate inference instead of explicit delegate instantiation when possible

9@110 Each subscribe must have a corresponding unsubscribe

Rule 9@101

Synopsis:Do not make assumptions on the object's state after raising an event
Language:C#
Level: 2
Category:Delegates and events

Description

Prepare for any changes to the current object's state while executing an event handler. The event handler may
have called other methods or properties that changed the object?s state (e.g. it may have disposed objects
referenced through a field).

Rule 9@102

Synopsis:Always document from which thread an event handler is called
Language:C#
Level: 9
Category:Delegates and events

Description

Some classes create a dedicated thread or use the Thread Pool to perform some work, and then raise an event.
The consequence of that is that an event handler is executed from another thread than the main thread. For
such an event, the event handler must synchronize (ensure thread-safety) access to shared data (e.g. instance
members).

Rule 9@103

Synopsis:Raise events through a protected virtual method

45

Language:C#
Level: 9
Category:Delegates and events

Description

If a derived class wants to intercept an event, it can override such a virtual method, do its own work, and then
decide whether or not to call the base class version (whether or not this should be done, is mentioned by the
base class documentation). Since the derived class may decide not to call the base class method, ensure that it
does not do any work required for the base class to function properly.

Name this method OnEventName, where EventName should be replaced with the name of the event. Notice
that an event handler uses the same naming scheme but has a different signature. The following snippet (most
parts left out for brevity) illustrates the difference between the two.

///<summary>An example class</summary>
public class Connection
{
 // Event definition
 public event EventHandler Closed;

 // Method that causes the event to occur
 public void Close()
 {
 // Do something and then raise the event
 OnClosed(EventArgs.Empty);
 }

 // Method that raises the Closed event.
 protected virtual OnClosed(EventArgs args)
 {
 if (Closed != null)
 {
 Closed(this, args);
 }
 }
}
///<summary>Main entrypoint.</summary>
public static void Main()
{
 Connection connection = new Connection();
 connection.Closed += new EventHandler(OnClosed);
 // For .NET 2
 // connection.Closed += OnClosed;
}
///<summary>Event handler for the Closed event</summary>
private static void OnClosed(object sender, EventArgs args)
{
 ...
}

Rule 9@104

Synopsis:Use the sender/arguments signature for event handlers
Language:C#
Level: 6
Category:Delegates and events

Philips Healthcare C# Coding Standard

46

Description

The goal of this rule is to have a consistent signature for all event handlers. In general, the event handler?s
signature should look like this

public delegate void MyEventHandler(object sender, EventArgs arguments)

Using the base class as the sender type allows derived classes to reuse the same event handler.

The same applies to the arguments parameter. It is recommended to derive from the .NET Framework?s
EventArgs class and add your own event data. Using such a class prevents cluttering the event handler?s
signature, allows extending the event data without breaking any existing users, and can accommodate multiple
return values (instead of using reference fields). Moreover, all event data should be exposed through
properties, because that allows for verification and preventing access to data that is not always valid in all
occurrences of a certain event.

Note: If possible use the generic EventHandler instead of defining your own EventHandler delegate.

Rule 9@105

Synopsis: Implement add/remove accessors if the number of handlers for an event must be limited
Language:C#
Level: 8
Category:Delegates and events

Description

If you implement the add and remove accessors of an event, then the CLR will call those accessors when an
event handler is added or removed. This allows limiting the number of allowed event handlers, or to check for
certain preconditions.

Rule 9@106

Synopsis:Consider providing property-changed events
Language:C#
Level: 9
Category:Delegates and events

Description

Consider providing events that are raised when certain properties are changed. Such an event should be named
PropertyChanged, where Property should be replaced with the name of the property with which this
event is associated.

Rule 9@107

Synopsis:Consider an interface instead of a delegate

Philips Healthcare C# Coding Standard

47

Language:C#
Level: 9
Category:Delegates and events

Description

If you provide a method as the target for a delegate, the compiler will only ensure that the method signature
matches the delegate's signature.

This means that if you have two classes providing a delegate with the same signature and the same name, and
each class has a method as a target for that delegate, it is possible to provide the method of the first class as a
target for the delegate in the other class, even though they might not be related at all.

Therefore, it is sometimes better to use interfaces. The compiler will ensure that you cannot accidentally
provide a class implementing a certain interface to a method that accepts another interface that happens to
have to same name.

Rule 9@108

Synopsis:Use delegate inference instead of explicit delegate instantiation when possible
Language:C#
Level: 9
Category:Delegates and events

Description

Using delegate inference for subscribing to and unsubscribing from event, code can be made much more
elegant than the old previous way, which was like:

 someClass.SomeEvent += new EventHandler(OnHandleSomeEvent);
 private void OnHandleSomeEvent(object sender, EventArgs e)
 {...}

This can now be replaced by:

 someClass.SomeEvent += OnHandleSomeEvent;
 private void OnHandleSomeEvent(object sender, EventArgs e)
 {...}
}

Note: this only applies to code written in C# 2.0 and higher.

Rule 9@110

Synopsis:Each subscribe must have a corresponding unsubscribe
Language:C#
Level: 2
Category:Delegates and events

Description

Subscribing to an event gives the object that sends the event, a reference to the subscribed object. If the
subscribed object does not unsubscribe once that is not needed, then it will still be called. If for example, the

Philips Healthcare C# Coding Standard

48

subscribed object is disposed, then the event still is called on that disposed object (which usually is not
intended), and also it is not garbage collected. Therefore it is good to ensure that for each subscribe that is
done, also an unsubscribe is done, once listening to that event is no longer needed. The Dispose()
implementation could be used to ensuring that all unsubscribes are done.

Philips Healthcare C# Coding Standard

49

Various data types (Data types)
Rules

10@201 Use an enum to strongly type parameters, properties, and return types

10@202 Use the default type Int32 as the underlying type of an enum unless there is a reason to use
Int64

10@203 Use the [Flags] attribute on an enum if a bitwise operation is to be performed on the numeric
values

10@301 Do not use ?magic numbers?

10@401 Floating point values shall not be compared using either the ==, !=, >=, <= operators and
Equals method.

10@403 Do not cast types where a loss of precision is possible

10@404 Only implement casts that operate on the complete object

10@405 Do not generate a semantically different value with a cast

10@406 When using composite formatting, do supply all objects referenced in the format string

10@407 When using composite formatting, do not supply any object unless it is referenced in the format
string

Rule 10@201

Synopsis:Use an enum to strongly type parameters, properties, and return types
Language:C#
Level: 6
Category:Data types

Description

This enhances clarity and type-safety. Try to avoid casting between enumerated types and integral types.

Exception:

In some cases, such as when databases or PII interfaces that store values as ints are involved, using enums
will result in an unacceptable amount of casting. In that case, it is better to use a const int construction.

Rule 10@202

Synopsis:Use the default type Int32 as the underlying type of an enum unless there is a reason to use
Int64

Language:C#
Level: 5
Category:Data types

Description

If the enum represents flags and there are currently more than 32 flags, or the enum might grow to that many
flags in the future, use Int64.

50

Do not use any other underlying type because the Operating System will try to align an enum on 32-bit or
64-bit boundaries (depending on the hardware platform). Using a 8-bit or 16-bit type may result in a
performance loss.

Rule 10@203

Synopsis:Use the [Flags] attribute on an enum if a bitwise operation is to be performed on the numeric
values

Language:C#
Level: 7
Category:Data types

Description

It is good practice to use the Flags attribute for documenting that the enumeration is intended for
combinations. Also using this attribute provides an implementation of the ToString method, which displays
the values in their original names instead of the values.

Example:

FileInfo file = new FileInfo(fileName);
file.Attributes = FileAttributes.Hidden | FileAttributes.ReadOnly;
Console.WriteLine("file.Attributes = {0}", file.Attributes.ToString());

The printed result will be ReadOnly|Hidden.

Use an enum with the flags attribute only if the value can be completely expressed as a set of bit flags. Do
not use an enum for open sets (such as the operating system version). Use a plural name for such an enum, as
stated in [3@203].

Example:

[Flags]
public enum AccessPrivileges
{
 Read = 0x1,
 Write = 0x2,
 Append = 0x4,
 Delete = 0x8,
 All = Read | Write | Append | Delete
}

Rule 10@301

Synopsis:Do not use ?magic numbers?
Language:C#
Level: 7
Category:Data types

Philips Healthcare C# Coding Standard

51

Description

Do not use literal values, either numeric or strings, in your code other than to define symbolic constants. Use
the following pattern to define constants:

public class Whatever
{
 public static readonly Color PapayaWhip = new Color(0xFFEFD5);
 public const int MaxNumberOfWheels = 18;
}

There are exceptions: the values 0, 1 and null can nearly always be used safely. Very often the values 2 and
-1 are OK as well. Strings intended for logging or tracing are exempt from this rule. Literals are allowed
when their meaning is clear from the context, and not subject to future changes.

mean = (a + b) / 2; // okay
WaitMilliseconds(waitTimeInSeconds * 1000); // clear enough

If the value of one constant depends on the value of another, do attempt to make this explicit in the code, so
do not write

public class SomeSpecialContainer
{
 public const int MaxItems = 32;
 public const int HighWaterMark = 24; // at 75%
 ...
}

but rather do write

public class SomeSpecialContainer
{
 public const int MaxItems = 32;
 public const int HighWaterMark = 3 * MaxItems / 4; // at 75%
 ...
}

Please note that an enum can often be used for certain types of symbolic constants

Rule 10@401

Synopsis:Floating point values shall not be compared using either the ==, !=, >=, <= operators and
Equals method.

Language:C#
Level: 2
Category:Data types

Description

Most floating point values have no exact binary representation and have a limited precision. Use the following
instead: Math.Abs(x - y) < Single.Epsilon

Exception:

When a floating point variable is explicitly initialized with a value such as 1.0 or 0.0, and then checked for a

Philips Healthcare C# Coding Standard

52

change at a later stage.

Rule 10@403

Synopsis:Do not cast types where a loss of precision is possible
Language:C#
Level: 1
Category:Data types

Description

For example, do not cast a long (64-bit) to an int (32-bit), unless you can guarantee that the value of the
long is small enough to fit in the int.

Rule 10@404

Synopsis:Only implement casts that operate on the complete object
Language:C#
Level: 2
Category:Data types

Description

In other words, do not cast one type to another using a member of the source type. For example, a Button
class has a string property Name. It is valid to cast the Button to the Control (since Button is a
Control), but it is not valid to cast the Button to a string by returning the value of the Name property.

Rule 10@405

Synopsis:Do not generate a semantically different value with a cast
Language:C#
Level: 2
Category:Data types

Description

For example, it is appropriate to convert a Time or TimeSpan into an Int32. The Int32 still represents
the time or duration. It does not, however, make sense to convert a file name string such as
c:\mybitmap.gif into a Bitmap object.

Rule 10@406

Synopsis:When using composite formatting, do supply all objects referenced in the format string
Language:C#

Philips Healthcare C# Coding Standard

53

Level: 1
Category:Data types

Description

Composite formatting, e.g. in String.Format, uses indexed placeholders that must correspond to elements in
the list of values. A runtime exception results if a parameter specifier designates an item outside the bounds of
the list of values, and we prefer not to have runtime exceptions.

Example:

Console.WriteLine("The value is {0} and not {1}", i);

where the {1} specifier designates a missing parameter.

Rule 10@407

Synopsis:When using composite formatting, do not supply any object unless it is referenced in the format
string

Language:C#
Level: 4
Category:Data types

Description

Composite formatting, e.g. in String.Format, uses indexed placeholders that must correspond to elements in
the list of values. It is not an error to supply objects in that list that are not referenced in the format string, but
it very likely a mistake.

Example:

Console.WriteLine("The value is {0} and not {0}", i, j);

where the second specifier was probably intended to be {1} to refer to j.

Philips Healthcare C# Coding Standard

54

Coding style (Coding style)
Rules

11@101 Do not mix coding styles within a group of closely related classes or within a module

11@403 The public, protected, and private sections of a class or struct shall be declared in
that order

11@407 Write unary, increment, decrement, function call, subscript, and access operators together with
their operands

11@409 Use spaces instead of tabs

11@411 Do not create overly long source lines

Rule 11@101

Synopsis:Do not mix coding styles within a group of closely related classes or within a module
Language:C#
Level: 9
Category:Coding style

Description

This coding standard gives you some room in choosing a certain style. Do keep the style consistent within a
certain scope. That scope is not rigidly defined here, but is at least as big as a source file.

Rule 11@403

Synopsis:The public, protected, and private sections of a class or struct shall be declared in
that order

Language:C#
Level: 9
Category:Coding style

Description

Although C# does not have the same concept of accessibility sections as C++, do group them in the given
order. However, keep the fields at the top of the class (preferably inside their own #region). The
protected internal section goes before the protected section, and the internal section before
the private section.

Rule 11@407

Synopsis:Write unary, increment, decrement, function call, subscript, and access operators together with
their operands

Language:C#
Level: 10
Category:Coding style

55

Description

This concerns the following operators:

unary: & * + - ~ !

increment and decrement:-- ++

function call and subscript:() []

access: .
It is not allowed to add spaces in between these operators and their operands.

It is not allowed to separate a unary operator from its operand with a newline.

Note: this rule does not apply to the binary versions of the & * + - operators.

Example:

a = -- b; // wrong
a = --c; // right

a = -b - c; // right
a = (b1 + b2) +
 (c1 - c2) +
 d - e - f; // also fine: make it as readable as possible

Rule 11@409

Synopsis:Use spaces instead of tabs
Language:C#
Level: 9
Category:Coding style

Description

Different applications interpret tabs differently. Always use spaces instead of tabs. You should change the
settings in Visual Studio .NET (or any other editor) for that.

Rule 11@411

Synopsis:Do not create overly long source lines
Language:C#
Level: 8
Category:Coding style

Description

Long lines are hard to read. Many applications, such as printing and difference views, perform poorly with
long lines. A maximum line length of 80 characters has proven workable for C and C++. However, C# tends
to be more verbose and have deeper nesting compared to C++, so the limit of 80 characters will often cause a
statement to be split over multiple lines, thus making it somewhat harder to read. This standard does not set
any explicit limit on the length of a source line, thus leaving the definition of `too long? to groups or projects.

Philips Healthcare C# Coding Standard

56

Literature
C# Lang
Title: C# Language Specification
Author: TC39/TG2/TG3
Year: 2001
Publisher: ecma
ISBN: ECMA-334
http://www.ecma-international.org/publications/standards/Ecma-334.htm

C++ Coding Standard
Title: Philips Healthcare C++ Coding Standard
Author: Philips Healthcare CCB Coding Standards
Year: 2008
Publisher: Philps Healthcare
http://tics/codingstandards/CPP/viewer

Liskov 88
Title: Data Abstraction and Hierarchy
Author: Barbara Liskov
Year: 1988
Publisher: SIGPLAN Notices, 23,5 (May, 1988)
http://portal.acm.org/citation.cfm?id=62141

MS Design
Title: Design Guidelines for Developing Class Libraries
Author: Microsoft, MSDN
http://msdn.microsoft.com/en-us/library/ms229042(VS.80).aspx

Meyer 88
Title: Object Oriented Software Construction
Author: Betrand Meyer
Year: 1988
Publisher: Prentice Hall

57

http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://tics/codingstandards/CPP/viewer
http://portal.acm.org/citation.cfm?id=62141
http://msdn.microsoft.com/en-us/library/ms229042(VS.80).aspx

	Table of Contents
	Introduction
	1.1. Objective
	1.2. Scope

	General rules (General)
	Rule 2@105
	Description

	Naming conventions (Naming)
	Rule 3@101
	Description

	Rule 3@102
	Description

	Rule 3@103
	Description

	Rule 3@104
	Description

	Rule 3@105
	Description

	Rule 3@106
	Description

	Rule 3@107
	Rule 3@108
	Description

	Rule 3@109
	Description

	Rule 3@110
	Description

	Rule 3@111
	Description

	Rule 3@112
	Description

	Rule 3@113
	Description

	Rule 3@120
	Description

	Rule 3@122
	Description

	Rule 3@201
	Description

	Rule 3@202
	Description

	Rule 3@203
	Description

	Rule 3@204
	Description

	Rule 3@301
	Description

	Rule 3@302
	Description

	Rule 3@303
	Description

	Rule 3@304
	Description

	Rule 3@305
	Description

	Rule 3@306
	Description

	Rule 3@307
	Description

	Rule 3@401
	Rule 3@402
	Description

	Rule 3@501
	Description

	Rule 3@503
	Description

	Rule 3@504
	Description

	Comments and embedded documentation (Comments)
	Rule 4@101
	Description

	Rule 4@103
	Rule 4@105
	Description

	Rule 4@106
	Description

	Object lifecycle (Object lifecycle)
	Rule 5@101
	Rule 5@102
	Description

	Rule 5@106
	Description

	Rule 5@107
	Description

	Rule 5@108
	Description

	Rule 5@111
	Description

	Rule 5@112
	Description

	Rule 5@113
	Description

	Rule 5@114
	Description

	Rule 5@116
	Description

	Control flow (Control flow)
	Rule 6@101
	Description

	Rule 6@102
	Description

	Rule 6@103
	Description

	Rule 6@105
	Description

	Rule 6@106
	Description

	Rule 6@109
	Description

	Rule 6@112
	Description

	Rule 6@115
	Description

	Rule 6@118
	Description

	Object oriented programming (Object oriented)
	Rule 7@101
	Description

	Rule 7@102
	Description

	Rule 7@105
	Description

	Rule 7@201
	Description

	Rule 7@301
	Description

	Rule 7@303
	Description

	Rule 7@402
	Description

	Rule 7@403
	Description

	Rule 7@501
	Description

	Rule 7@502
	Description

	Rule 7@504
	Description

	Rule 7@520
	Description

	Rule 7@521
	Description

	Rule 7@522
	Rule 7@525
	Description

	Rule 7@526
	Description

	Rule 7@530
	Rule 7@531
	Rule 7@532
	Rule 7@601
	Description

	Rule 7@602
	Rule 7@603
	Description

	Rule 7@604
	Description

	Rule 7@608
	Description

	Exceptions (Exceptions)
	Rule 8@101
	Description

	Rule 8@102
	Description

	Rule 8@103
	Description

	Rule 8@104
	Description

	Rule 8@105
	Description

	Rule 8@106
	Description

	Rule 8@107
	Description

	Rule 8@108
	Description

	Rule 8@109
	Description

	Rule 8@110
	Description

	Rule 8@202
	Description

	Rule 8@203
	Description

	Rule 8@204
	Description

	Delegates and events (Delegates and events)
	Rule 9@101
	Description

	Rule 9@102
	Description

	Rule 9@103
	Description

	Rule 9@104
	Description

	Rule 9@105
	Description

	Rule 9@106
	Description

	Rule 9@107
	Description

	Rule 9@108
	Description

	Rule 9@110
	Description

	Various data types (Data types)
	Rule 10@201
	Description

	Rule 10@202
	Description

	Rule 10@203
	Description

	Rule 10@301
	Description

	Rule 10@401
	Description

	Rule 10@403
	Description

	Rule 10@404
	Description

	Rule 10@405
	Description

	Rule 10@406
	Description

	Rule 10@407
	Description

	Coding style (Coding style)
	Rule 11@101
	Description

	Rule 11@403
	Description

	Rule 11@407
	Description

	Rule 11@409
	Description

	Rule 11@411
	Description

	Literature

